Multivariate Stirling Polynomials

Tutorial and Examples

Copyright © by Alfred Schreiber, 2013
Updated: 2013-10-25

Package command overview

MultivariateStirlingP1[n, k]

returns the multivariate Stirling polynomial $S_{n, k}$ of the first kind in $n-k+1$ indeterminates

MultivariateStirlingA[n, k]

returns the rational function $A_{n, k}$ defined by $X[1]^{-(2 n-1)} \times$ MultivariateStirlingP1[n, $\left.k\right]$

MultivariateStirlingP2[n, \boldsymbol{k}]

returns the multivariate Stirling polynomial $B_{n, k}$ of the second kind in $n-k+1$ indeterminates (= partial Bell polynomial)

SetVariablesTo[\{var1, var2, ...\}]
generates a rule set that converts indeterminates $X[1], X[2], \ldots$ into var1, var2, ...

SubIndexed[m]

generates a special rule set that converts $\mathrm{X}[1], \ldots, \mathrm{X}[\mathrm{m}]$ into X_{1}, \ldots, X_{m}

AssociateBellPolynomial[n, k]

returns the partial Bell polynomial $B_{n, k}(0, X[2], \ldots, X[n+k+1])$ with 0 substituted in place of $X[1]$

LahPolynomial[n, k]

returns the multivariate Lah polynomial $L_{n, k}$ in $n-k+1$ indeterminates

CauchyPolynomial[n, k]

returns the multivariate Cauchy polynomial $C_{n, k}$ in $n-k+1$ indeterminates

- Warning

The symbol X is used as the basis letter denoting indeterminates; it is protected within this package, that is, you cannot change its value:

$$
x=4 ;
$$

Set::wrsym : Symbol X is Protected. >
However ...

$$
\begin{aligned}
& \{\mathrm{X}[1], \mathrm{X}[2], \mathrm{X}[3]\} / . \operatorname{SetVariablesTo}[\{-5,7\}] \\
& \{-5,7, \mathrm{X}[3]\}
\end{aligned}
$$

Read in the package file

In order to evaluate the cell below, both files "MultivariateStirlingPolynomials.m" and
"MultivariateStirlingPolynomialsExamples.nb" must have been copied into your working directory.

```
SetDirectory[NotebookDirectory[]];
<< MultivariateStirlingPolynomials`
```


Something new about a classical topic

The multivariate Stirling polynomials of the first kind—as I would like to call this new class of polynomials—are closely connected to the well-known Bell polynomials. This became clear to me when I studied higher Lie derivatives of scalar functions and Faà di Bruno's chain rule.
"It would be surprising if anything new could be said about such a classical topic ..."

Huang / Marcantognini / Young: Chain Rules for Higher Derivatives.
The Mathematical Intelligencer 28/2 (2006)

Generate Stirling polynomials of the second kind

Let's start with some well-known stuff.
Multivariate Stirling Polynomials (MSPs) of the second kind are the same as partial Bell Polynomials ($B_{n, k}$).
Here comes the Bell polynomial $B_{6,4}$:

```
MultivariateStirlingP2[6, 4]
```

$45 \times[1]^{2} \times[2]^{2}+20 \times[1]^{3} \times[3]$

If you don't like the indeterminates notated as $X[1], X[2], \ldots$, try this:

```
MultivariateStirlingP2[6, 4] /. SetVariablesTo[{x, y, z}]
45 \mp@subsup{x}{}{2}\mp@subsup{y}{}{2}+20\mp@subsup{x}{}{3}z
```

or that:
MultivariateStirlingP2 [6, 4] /. SubIndexed [6-4+1]
$45 x_{1}^{2} x_{2}^{2}+20 x_{1}^{3} x_{3}$

Replacing all indeterminates by 1 , gives the sum of the coefficients:

```
MultivariateStirlingP2 [6, 4] /. SetVariablesTo [{1, 1, 1}]
``` 65

Recall that this is a Stirling number of the second kind:
```

StirlingS2[6, 4]

```

65
Finally, let's create a nice triangular matrix of partial Bell polynomials:
```

BMatrix = Table[Table[MultivariateStirlingP2[i, j], {j, 1, 4}], {i, 1, 4}];
BMatrix /. SubIndexed [4] // MatrixForm

```
\(\left(\begin{array}{cccc}X_{1} & 0 & 0 & 0 \\ X_{2} & X_{1}^{2} & 0 & 0 \\ X_{3} & 3 X_{1} X_{2} & X_{1}^{3} & 0 \\ X_{4} & 3 X_{2}^{2}+4 X_{1} X_{3} & 6 X_{1}^{2} X_{2} & X_{1}^{4}\end{array}\right)\)

\section*{Generate Stirling polynomials of the first kind}

The polynomial family \(S_{n, k}, 1 \leq k \leq n\), is -as a whole- new.
Here comes their 5-th generation consisting of the members \(S_{5, i}(1 \leq i \leq 5)\) :
```

Table[MultivariateStirlingP1[5, i], {i, 1, 5}] // TableForm

```
```

105 X[2] 4}-105X[1] X[2] 2 X[3] + 10 X[1] 2 X[3] 2 + 15 X[1] 2 X[2] X[4]-X[1] ' X[5

- 105 X[1] X[2] 3}+60 X[1] ' X[2] X[3] - 5 X[1] ' X[4]
45X[1] }\mp@subsup{}{}{2}\times[2\mp@subsup{]}{}{2}-10\times[1\mp@subsup{]}{}{3}\times[3
-10 X[1] }\mp@subsup{}{}{3}\times[2
X[1] }\mp@subsup{}{}{4

```

Replacing every \(X[j]\) by 1 , again yields Stirling numbers:
\% /. SetVariablesTo [\{1, 1, 1, 1, 1\}]
\(\{24,-50,35,-10,1\}\)
These, however, are signed Stirling numbers of the first kind:
```

Table[StirlingS1[5, i], {i, 1, 5}]

```
\(\{24,-50,35,-10,1\}\)

Now, let's create an SMatrix analogous to the preceding BMatrix:
SMatrix = Table[Table[MultivariateStirlingP1 [i, j], \{j, 1, 4\}], \{i, 1, 4\}]; SMatrix /. SubIndexed [4] // MatrixForm
\[
\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-X_{2} & X_{1} & 0 & 0 \\
3 X_{2}^{2}-X_{1} X_{3} & -3 X_{1} X_{2} & X_{1}^{2} & 0 \\
-15 X_{2}^{3}+10 X_{1} X_{2} X_{3}-X_{1}^{2} X_{4} & 15 X_{1} X_{2}^{2}-4 X_{1}^{2} X_{3} & -6 X_{1}^{2} X_{2} & X_{1}^{3}
\end{array}\right)
\]

\section*{A fundamental law of inversion}

The product of both matrices comes as a surprise:
```

SMatrix.BMatrix // Simplify // MatrixForm

```
\[
\left(\begin{array}{cccc}
X[1] & 0 & 0 & 0 \\
0 & X[1]^{3} & 0 & 0 \\
0 & 0 & X[1]^{5} & 0 \\
0 & 0 & 0 & X[1]^{7}
\end{array}\right)
\]

This gives evidence to the fact that \(A_{n, k}:=X_{1}{ }^{-(2 n-1)} S_{n, k}\) and \(B_{n, k}\) meet a condition strongly generalizing the well-known inversion law of the Stirling numbers of the first and second kind:
```

AMatrix = Table[Table[MultivariateStirlingA[i, j], {j, 1, 4}], {i, 1, 4}];
AMatrix // MatrixForm

```
\[
\left(\begin{array}{cccc}
\frac{1}{\mathrm{X}[1]} & 0 & 0 & 0 \\
-\frac{\mathrm{X}[2]}{\mathrm{X}[1]^{3}} & \frac{1}{\mathrm{X}[1]^{2}} & 0 & 0 \\
\frac{3 \mathrm{X}[2]^{2}}{\mathrm{X}[1]^{5}}-\frac{\mathrm{X}[3]}{\mathrm{X}[1]^{4}} & -\frac{3 \mathrm{x}[2]}{\mathrm{X}[1]^{4}} & \frac{1}{\mathrm{X}[1]^{3}} & 0 \\
-\frac{15 \mathrm{X}[2]^{3}}{\mathrm{X}[1]^{7}}+\frac{10 \mathrm{X}[2] \mathrm{X}[3]}{\mathrm{X}[1]^{6}}-\frac{\mathrm{X}[4]}{\mathrm{X}[1]^{5}} & \frac{15 \mathrm{X}[2]^{2}}{\mathrm{X}[1]^{6}}-\frac{4 \mathrm{X}[3]}{\mathrm{X}[1]^{5}} & -\frac{6 \mathrm{X}[2]}{\mathrm{X}[1]^{5}} & \frac{1}{\mathrm{X}[1]^{4}}
\end{array}\right)
\]

Then, the inversion law for multivariate Stirling polynomials is as follows:

\section*{AMatrix.BMatrix // Expand // MatrixForm}
\(\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\)

Of course, also the following holds:
BMatrix.AMatrix // Expand // MatrixForm
\(\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)\)

\section*{The main result}

Theorem 6.1 in my paper on Multivariate Stirling Polynomials of the First and Second Kind (to appear) states that for all \(n \geq k \geq 1\) the following equation holds:
\[
S_{n, k}=\sum_{r=k-1}^{n-1}(-1)^{n-1-r}\binom{2 n-2-r}{k-1} X_{1}^{r} B_{2 n-1-k-r, n-1-r}(0, X[2], \ldots, X[n-k+1])
\]

Let's try an instance:
```

n = 7; k = 3;
MultivariateStirlingP1[n, k] /. SubIndexed [n-k+1]
Sum[(-1) n-1-r Binomial[2n-2-r,k-1] X[1] r AssociateBellPolynomial[2n-1-k-r, n-1-r],
{r,k-1, n-1}]/.SubIndexed[n-k+1] // Expand
4725 \mp@subsup{X}{1}{2}\mp@subsup{x}{2}{4}-3780 \mp@subsup{X}{1}{3}\mp@subsup{X}{2}{2}\mp@subsup{X}{3}{}+280 \mp@subsup{X}{1}{4}\mp@subsup{X}{3}{2}+420 \mp@subsup{X}{1}{4}\mp@subsup{X}{2}{}\mp@subsup{X}{4}{}-21 \mp@subsup{X}{1}{5}\mp@subsup{X}{5}{}
4725 X1 2 X

```

\section*{- Lagrange inversion}

In the special case \(k=1\) we get the remarkable result that \(S_{n, 1}\) can be used to invert a power series \(p(x)=a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\left(a_{1} \neq 0\right)\). More precisely: Let \(b_{n}:=a_{1}^{-(2 n-1)} S_{n, 1}\left(a_{1}, \ldots, a_{n}\right)\). Then, \(b_{n}\) is the \(n\)-th coefficient of the inverse of \(p(x)\), that is, we have \(p^{-1}(x)=b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots\), where \(p\left(p^{-1}(x)\right)=p^{-1}(p(x))=x\).

\section*{Relatives of the Bell polynomials}

Whenever we replace the indeterminates \(X[j]\) in \(B_{n, k}\) by a multiplum \(c_{j} X[j]\) (for all \(j=1,2, \ldots, n-k+1\)), we obtain a polynomial closely related to the original Bell polynomials. Let's call it a relative of \(B_{n, k}\).

\section*{Cauchy polynomials}

For \(c_{j}=(j-1)\) ! the result looks like this:
CauchyPolynomial [7, 4] /. SubIndexed [7-4 + 1]
\(105 x_{1} x_{2}^{3}+420 X_{1}^{2} X_{2} X_{3}+210 x_{1}^{3} X_{4}\)
Why "Cauchy"?
Have, for instance, a look at the first coefficient! 105 is the number of permutations having 1 cycle of length 1 and 3 cycles of length 2 . This condition is mirrored by the monomial \(X_{1} X_{2}^{3}\). Cauchy has found a famous expression that computes these numbers. Of course, the sum of all these counts the number of permutations (here: of 7 elements) consisting of 4 cycles. This is the signless Stirling number of the first kind \(c(7,4)\) :

CauchyPolynomial [7, 4] /. SetVariablesTo[\{1, 1, 1, 1\}]
735

StirlingS1[7, 4]
- 735

\section*{- Lah polynomials}

Counting linearly ordered subsets (blocks or parts of a partition) instead of cycles, gives the Lah numbers (named after Ivo Lah) as coefficients. The resulting polynomials may be called Lah polynomials. Here \(c_{j}=j\) ! for \(j=1,2, \ldots, n-k+1\).

LahPolynomial[6, 2]
\(360 \times[3]^{2}+720 \times[2] \times[4]+720 \times[1] \times[5]\)
Consider the sum of all coefficients, that is: the signless Lah number corresponding to this polynomial:
```

LahPolynomial[6, 2] /. SetVariablesTo[Table[1, {5}]]

```
1800

This result is the number of ways a set of \(n=6\) elements can be partitioned into \(k=2\) nonempty linearly ordered subsets. It can be simply expressed by the combinatorial term: \(\frac{n!}{k!}\binom{n-1}{k-1}\).
\(\mathrm{n}=6 ; \mathrm{k}=2\);
n! * Binomial [n-1, k-1] / k!
1800```

