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Package command overview

MultivariateStirlingP1[n, k]
returns the multivariate Stirling polynomial Sy, k of the first kind in n — k + 1 indeterminates

MultivariateStirlingA[n, k]
returns the rational function A, x defined by X[1]7@"Dx MultivariateStirlingP1[n, k]

MultivariateStirlingP2[n, k]
returns the multivariate Stirling polynomial By of the second kind in n — k + 1 indeterminates (= partial Bell
polynomial)

SetVariablesTo[{varl, var2, ..}]
generates a rule set that converts indeterminates X[1], X[2], ... into varl, var2, ...

Subl ndexed[m]
generates a special rule set that converts X[1],...,X[m] into Xy,...,Xn

AssociateBellPolynomial[n, k]
returns the partial Bell polynomial B, (0, X[2], ..., X[n + k + 1]) with O substituted in place of X[1]

L ahPolynomial[n, k]
returns the multivariate Lah polynomial L, in n — k + 1 indeterminates

CauchyPolynomial[n, k]
returns the multivariate Cauchy polynomial Cp,x in n — k + 1 indeterminates

= Warning

The symbol X isused asthe basisletter denoting indeter minates; it is protected within this package,
that is, you cannot changeitsvalue:

X =4;
Set::wrsym : Symbol X is Protected. >
However ...
{X[1]., X[21. X[31} /. SetVariablesTo[{-5, 7}]
{-5, 7, X[3]}
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Read in the package file

In order to evaluate the cell below, both files "MultivariateStirlingPolynomials.m™ and
"MultivariateStirlingPolynomialsExamples.nb™ must have been copied into your working directory.

SetDirectory [NotebookDirectory[]1];
<< MultivariateStirlingPolynomials™

Something new about a classical topic

The multivariate Stirling polynomials of the first kind—as | would like to call this new class of polynomials—are closely
connected to the well-known Bell polynomials. This became clear to me when | studied higher Lie derivatives of scalar
functions and Faa di Bruno's chain rule.

"It wonld be surprising if anything new conld be said about such a classical topic ..."

Huang / Marcantognini / Young: Chain Rules for Higher Derivatives.
The Mathematical Intelligencer 28/2 (2006)

Generate Stirling polynomials of the second kind

Let's start with some well-known stuff.
Multivariate Stirling Polynomials (MSPs) of the second kind are the same as partial Bell Polynomials (Bn,k).

Here comes the Bell polynomial B 4:
MultivariateStirlingP2[6, 4]
45 X[1]%X[2]12+20X[1]° X[3]

If you don't like the indeterminates notated as X[1], X[2], ..., try this:
MultivariateStirlingP2[6, 4] /. SetVariablesTo[{X, ¥, z}]
45 x2y? 1 20x% z

or that:
MultivariateStirlingP2[6, 4] /. Sublndexed[6 -4 + 1]
45 X3 X3 + 20 X3 X3

Replacing all indeterminates by 1, gives the sum of the coefficients:
MultivariateStirlingP2[6, 4] /. SetVariablesTo[{1, 1, 1}]
65

Recall that this is a Stirling number of the second kind:
StirlingS2[6, 4]
65

Finally, let's create a nice triangular matrix of partial Bell polynomials:
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BMatrix = Table[Table[MultivariateStirlingP2[i, j1, {J, 1, 4}1, {i, 1, 4}1;

BMatrix /. Sublndexed[4] // MatrixForm

X1 0 0 o0
Xz X2 0 o0
X3 3 X1 Xz X o0

Xs 3X3+4X1 X 6X2Xp X4

Generate Stirling polynomials of the first kind

The polynomial family Spx, 1 <k <n, is —as a whole— new.

Here comes their 5-th generation consisting of the members Ss;; (1 <i <5):

Table[MultivariateStirlingP1[5, 1], {i, 1, 5}] // TableForm

105 X[2]% - 105X [1] X[2]?X[3] +10X[1]?X[3]%2 +15X[1]? X[2] X[4] - X[1]® X[5]

105 X[1] X[21®+60X[1]12X[2] X[3] -5X[1]13X[4]
45 X[1]12X[2]%-10X[1]3 X[3]
~10X[1]1®X[2]
X[114
Replacing every X[]j] by 1, again yields Stirling numbers:
% /. SetVariablesTo[{1, 1, 1, 1, 1}]
{24, -50, 35, -10, 1}

These, however, are signed Stirling numbers of the first kind:
Table[StirlingS1[5, i], {i, 1, 5}]
(24, -50, 35, -10, 1}

Now, let's create an SMatrix analogous to the preceding BMatrix:

SMatrix = Table[Table[MultivariateStirlingPl1[i, j1, {J, 1, 4}1, {i, 1, 4}1;

SMatrix /. Sublndexed[4] // MatrixForm

1 0 0
X, X1 0
3X2 - Xy X3 ~3 X1 Xo X2

“15X3+ 10Xy Xo X3 - X2 X, 15 X1 X3 -4X2Xs -6X2 X, X3

A fundamental law of inversion

o O O

The product of both matrices comes as a surprise:

SMatrix.BMatrix // Simplify // MatrixForm

X[1] 0 0 0
0 X[11® o 0
0 0 X[11® o
0 0 0 X1’

This gives evidence to the fact that Any := X,~@n-D Snk and Bnx meet a condition strongly generalizing the well-known

inversion law of the Stirling numbers of the first and second kind:
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AMatrix = Table[Table[MultivariateStirlingA[i, j1, {J, 1, 4}1, {i, 1, 4}1;
AMatrix // MatrixForm

X1 0 0 0
X[2] 1
T X113 X[1]2 0 0
3X[2)2 _ X[3] _3X[2) 1 0
X[1]® X[114 X[114 X113
15X[2)8 10 X[2] X[3] X[4] 15X[2]2 4X[3] 6X[2] 1
C Xy’ X[16 X[ X[(11° X[ X[1® X1

Then, the inversion law for multivariate Stirling polynomialsis as follows:
AMatrix.BMatrix // Expand // MatrixForm

1000

0
0
0

O O
o O

0
0
1
Of course, also the following holds:

BMatrix.AMatrix // Expand // MatrixForm
00O

o O Oor
O O
O rFr O

0
0
1

The main result

Theorem 6.1 in my paper on Multivariate Stirling Polynomials of the First and Second Kind (to appear) states that for all
n =k = 1 the following equation holds:

n-1

2n-2-r
Sak= (—1)"-1-'( ‘1 )X{ B2n-1-k-rn-1-r(0, X[2], ..., X[N =k +1])
r=k-1

Let's try an instance:

n=7; k=3;

MultivariateStirlingP1[n, K] /. Sublndexed[n - K + 1]

Sum[(-l)“‘l‘r Binomial[2n-2-r, k-1] X[1]" AssociateBellPolynomial [2n-1-K-r, n-1-r],
{r, k-1, n-1}] /. Sublndexed[n -k +1] // Expand

4725 X2 X4 - 3780 X3 X3 X3 + 280 X4 X2 + 420 X4 Xo X4 - 21 X5 Xs

4725 X2 X4 - 3780 X3 X3 X3 + 280 X4 X3 + 420 X4 Xo X4 - 21 X5 Xs

m Lagrange inversion

In the special case k=1 we get the remarkable result that S,; can be used to invert a power series
p(x)=ar; x+a; x> +azx3+... (@, # 0). More precisely: Let b, :=a;"?"YS, i(ay, ..., ay). Then, by is the n-th coeffi-
cient of the inverse of p(x), that is, we have p=(x) = by X + b X + by x3+..., where p(p~(x)) = p~(p(x)) = x.

Relatives of the Bell polynomials

Whenever we replace the indeterminates X[ j] in Bny by a multiplum c; X[j] (forall j=1, 2, .., n—k + 1), we obtain a
polynomial closely related to the original Bell polynomials. Let's call it a relative of By .
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Cauchy polynomials

For ¢cj = (j — 1)! the result looks like this:
CauchyPolynomial [7, 4] /. Sublndexed[7 -4 + 1]
105 X1 X3 + 420 X2 X X3 + 210 X3 X,

Why "Cauchy"?
Have, for instance, a look at the first coefficient! 105 is the number of permutations having 1 cycle of length 1 and 3
cycles of length 2. This condition is mirrored by the monomial X; X23. Cauchy has found a famous expression that

computes these numbers. Of course, the sum of all these counts the number of permutations (here: of 7 elements) consist-
ing of 4 cycles. This is the signless Stirling number of the first kind c(7, 4):

CauchyPolynomial [7, 4] /. SetVariablesTo[{1, 1, 1, 1}]
735
StirlingS1[7, 4]

-735

= Lah polynomials

Counting linearly ordered subsets (blocks or parts of a partition) instead of cycles, gives the Lah numbers (named after
Ivo Lah) as coefficients. The resulting polynomials may be called Lah polynomials. Here c;=j! for

j=1,2, .,n-k+1.
LahPolynomial [6, 2]
360 X[3]2 + 720 X[2] X[4] + 720 X[1] X[5]
Consider the sum of all coefficients, that is: the signless Lah number corresponding to this polynomial:
LahPolynomial [6, 2] /. SetVariablesTo[Table[1l, {5}]]
1800
This result is the number of ways a set of n = 6 elements can be partitioned into k = 2 nonempty linearly ordered subsets.

y(n-1
It can be simply expressed by the combinatorial term: % ( k-1 )

n==6; k=2;
n! «Binomial[n-1, k-1] / k!

1800

Space for your experiments




